

University of Amsterdam

Does Everyone?

Conceptualizing Individual Variability in Inhibition Tasks

Julia Haaf April 29th, 2019

• People vary. Duh!

- People vary. Duh!
- Sometimes more and sometimes less relevant for us

- People vary. Duh!
- Sometimes more and sometimes less relevant for us
- Memory: We care about individual variability of memory strength more than item fit.

- People vary. Duh!
- Sometimes more and sometimes less relevant for us
- Memory: We care about individual variability of memory strength more than item fit.
- Attitudes: We care about how people are persuaded to change their attitudes, (often) not how preferences differ to begin with.

1. QID are defined by research question and experimental design

- 1. QID are defined by research question and experimental design
- **2.** QID point to differences in cognitive processing (not physical impairment nor experimental manipulation)

- 1. QID are defined by research question and experimental design
- **2.** QID point to differences in cognitive processing (not physical impairment nor experimental manipulation)
- **3.** QID are stable: Should be identifiable after sample noise is taken into account

Example: Stroop Effect

Theoretical Statement

• My favorite effect in psychology.

Theoretical Statement

- My favorite effect in psychology.
- Colors from congruent items are faster identified than colors from incongruent items.

Theoretical Statement

- My favorite effect in psychology.
- Colors from congruent items are faster identified than colors from incongruent items.
- Qualitative individual differences should reflect ability to inhibit automatic reading.

Stroop Data

Von Bastian, Souza, & Gade (2015)

Qualitative individual differences should reflect ability to inhibit automatic reading.

Stroop Data

Qualitative Differences

Research Questions

• Are there qualitative individual differences of the Stroop effect?

Research Questions

- Are there qualitative individual differences of the Stroop effect?
- Are there qualitative individual differences after sample noise is taken into account, or does everyone show a Stroop effect?

Models

• Participants: $i = 1, \ldots, I$

- Participants: $i = 1, \ldots, I$
- Condition: j = 1, 2 (congruent, incongruent)

- Participants: $i = 1, \ldots, I$
- Condition: j = 1, 2 (congruent, incongruent)
- Trials: $k = 1, ..., K_{ij}$

- Participants: $i = 1, \ldots, I$
- Condition: j = 1, 2 (congruent, incongruent)
- Trials: $k = 1, ..., K_{ij}$

 $Y_{ijk} \sim \text{Normal}(\alpha_i + x_j \theta_i, \sigma^2)$

- Participants: $i = 1, \ldots, I$
- Condition: j = 1, 2 (congruent, incongruent)
- Trials: $k = 1, ..., K_{ij}$

 $Y_{ijk} \sim \operatorname{Normal}(\alpha_i + x_j \theta_i, \sigma^2)$

• x_i is a dummy-variable, θ_i is the effect

Models on true effects θ_i

Haaf (2018); Haaf & Rouder (2017)

$$\theta_i = 0$$

$$heta_i =
u$$
 $u \sim \text{Truncated-Normal}(0, \eta^2)$

The Same-Effect Model

 $heta_i \sim \mathsf{Truncated}\operatorname{-Normal}(
u, au^2)$ $u \sim \mathsf{Truncated}\operatorname{-Normal}(0, \eta^2)$

The Positive-Effects Model

$$heta_i \sim \mathsf{Normal}(
u, au^2)$$
 $u \sim \mathsf{Normal}(0, \eta^2)$

The Unconstrained Model

From Models...

From Models... to Predictions

From Models... to Predictions... to Evidence

Are there qualitative individual differences of the Stroop effect?

Does everyone show a positive Stroop effect after taking sample noise into account?

Taking sample noise into account

• Residual variability is low (sd \approx 7 ms).

Bayes factor analysis of qualitative individual differences

• Residual variability is low ($sd \approx 7 \text{ ms}$).

- Residual variability is low ($sd \approx 7 \text{ ms}$).
- The positive-effects model is preferred

- Residual variability is low ($sd \approx 7 \text{ ms}$).
- The positive-effects model is preferred
- There are individual differences, but not in a meaningful way

- Residual variability is low ($sd \approx 7 \text{ ms}$).
- The positive-effects model is preferred
- There are individual differences, but not in a meaningful way
- Caveat: There was no theoretically informed alternative model for qualitative individual differences

https://github.com/jstbcs/play/tree/master/Qualitative% 20Individual%20Differences

filename <- curl::curl("https://raw.githubusercontent.com/ jstbcs/play/master/Qualitative%20 Individual%20Differences/quid.R")

```
source(filename)
```

res <- quid(id = data\$subject , condition = data\$condition . rt = data rt)

Mixtures of Populations

Theoretically meaningful model of qualitative individual differences

Negative Stroop effects: Stroop pathology?

Theoretically meaningful model of qualitative individual differences

- Negative Stroop effects: Stroop pathology?
- Very unlikely that individuals truly Stroop negative

Example II: Another Stroop Effect

Pratte, Rouder, Morey, & Feng (2010)

Pratte et al. (2010)

Pratte et al. (2010)

Pratte et al. (2010)

Location Stroop data

Participants use different strategies

- Participants use different strategies
- Do the task as expected

- Participants use different strategies
- Do the task as expected
- Or squint and get out of the room faster

- Participants use different strategies
- Do the task as expected
- Or squint and get out of the room faster
- How would we know?

Classification for location Stroop

Some do some don't

$$\mathcal{M}_{SS}$$
: $egin{array}{lll} heta_i | (z_i = 1) \sim \mathsf{Truncated-Normal}(
u, au^2), \ heta_i | (z_i = 0) = 0. \end{array}$

Modeling Approach: Some do some don't model

Haaf & Rouder (2019)

Modeling Approach: Some do some don't model

Location Stroop results

• The mixture model is preferred.

- The mixture model is preferred.
- There is evidence for qualitative individual differences, probably different strategies.

- The mixture model is preferred.
- There is evidence for qualitative individual differences, probably different strategies.
- Evidence is relatively weak, little variability left after sample noise is taken into account (sd ≈ 6 ms).

General lack of variability

(#tab:tab)

Inhibition experiments

	Total	Participants	Trials	Mean Effect	$\hat{\sigma}$	s _d	s_{θ}	$\hat{\tau}$
Stroop								
von.Bastian	11,245	121	46	64.68	198	47	8	19
Pratte.1	11,114	38	146	90.98	264	50	27	34
Pratte.2	12,565	38	165	11.85	160	20	6	12
Rey.Mermet.1	48,937	264	93	54.02	155	30	11	18
Rey.Mermet.2	48,966	261	94	58.88	175	69	59	64
Hedge	43,408	53	410	69.51	188	32	27	29
Simon								
von.Bastian.1	23,453	121	97	78.73	128	36	22	28
Pratte.1.1	17,343	38	228	16.81	186	24	10	15
Pratte.2.1	12,266	38	161	30.25	175	30	15	20
Flanker								
von.Bastian.2	11,215	121	46	1.38	152	32	4	12
Rey.Mermet.1.1	49,300	265	93	30.25	147	24	5	12
Rey.Mermet.2.1	39,275	207	95	36.43	107	43	37	40
Hedge.1	43,384	53	409	44.09	100	16	13	15
Other								
Rouder.1	11,346	52	109	50.29	165	28	9	16
Rouder.2	16,859	58	145	141.75	352	72	42	52
Mean	26,712	115	156	51.99	177	37	20	26
Median	17,343	58	109	50.29	165	32	13	19

Low variability comes from the ordinal constraint

Low variability comes from the ordinal constraint

What happens if we study individual differences and there are none?

- Tasks like Stroop are used in inhibition research

- Tasks like Stroop are used in inhibition research
- Examples: Simon, Flanker, Global/Local, Stop Signal, Anti-Saccade, Priming

- Tasks like Stroop are used in inhibition research
- Examples: Simon, Flanker, Global/Local, Stop Signal, Anti-Saccade, Priming
- Key: Effect = difference in performance

- Tasks like Stroop are used in inhibition research
- Examples: Simon, Flanker, Global/Local, Stop Signal, Anti-Saccade, Priming
- Key: Effect = difference in performance
- These tasks assess how well people inhibit irrelevant information like reading, location, other stimuli ...

- Tasks like Stroop are used in inhibition research
- Examples: Simon, Flanker, Global/Local, Stop Signal, Anti-Saccade, Priming
- Key: Effect = difference in performance
- These tasks assess how well people inhibit irrelevant information like reading, location, other stimuli ...
- Research Question: Is inhibition in all these tasks based on one underlying ability or separate abilities?

Table 2: Correlation between Stroop and Flanker Tasks

Study	Correlation
Friedman & Miyake (2004)	0.18
Pettigrew & Martin (2014)	0.03
Von Bastian et al. (2015)	0.00
Hedge et al. (2018)	-0.06
Rey-Mermet et al. (2018)	-0.09

Statistical artifact (as argued by Hedge, Powell, & Sumner, 2018)

- Statistical artifact (as argued by Hedge, Powell, & Sumner, 2018)
- Psychological reality (as argued by Rey-Mermet, Gade, & Oberauer, 2018)

- Statistical artifact (as argued by Hedge, Powell, & Sumner, 2018)
- Psychological reality (as argued by Rey-Mermet, Gade, & Oberauer, 2018)
- There are hundreds of studies that collect hundreds of thousands of observations.

- Statistical artifact (as argued by Hedge, Powell, & Sumner, 2018)
- Psychological reality (as argued by Rey-Mermet, Gade, & Oberauer, 2018)
- There are hundreds of studies that collect hundreds of thousands of observations.
- And we still don't know if the lack of correlation between Stroop and Flanker is a statistical artifact or psychological reality.

The complication of sample noise

Small individual differences + sample noise

Can we recover latent structure?

i: Individual, *j*: Task, *k*: Condition (congruent/incongruent), *ℓ*: Replicate

- *i*: Individual, *j*: Task, *k*: Condition (congruent/incongruent), *ℓ*: Replicate

 $Y_{ijk\ell} \sim \mathsf{Normal}(\alpha_{ij} + x_k \theta_{ij}, \sigma^2)$

i: Individual, *j*: Task, *k*: Condition (congruent/incongruent), *ℓ*: Replicate

$$Y_{ijk\ell} \sim \mathsf{Normal}(\alpha_{ij} + x_k \theta_{ij}, \sigma^2)$$

 $\boldsymbol{\theta}_i = (\theta_{i1}, \theta_{i2}, \ldots, \theta_{iJ})$

i: Individual, *j*: Task, *k*: Condition (congruent/incongruent), *ℓ*: Replicate

$$egin{aligned} Y_{ijk\ell} &\sim \mathsf{Normal}(lpha_{ij} + x_k heta_{ij}, \sigma^2) \ egin{aligned} oldsymbol{ heta}_i &= (heta_{i1}, heta_{i2}, \dots, heta_{iJ}) \ egin{aligned} oldsymbol{ heta}_i &\sim \mathsf{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight), \end{aligned}$$

i: Individual, *j*: Task, *k*: Condition (congruent/incongruent), *ℓ*: Replicate

$$Y_{ijk\ell} \sim \mathsf{Normal}(\alpha_{ij} + x_k \theta_{ij}, \sigma^2)$$

$$\boldsymbol{\theta}_i = (\theta_{i1}, \theta_{i2}, \ldots, \theta_{iJ})$$

$$\boldsymbol{ heta}_{i} \sim \mathsf{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}
ight),$$

- $\boldsymbol{\Sigma}$ is a matrix of free parameters that form a proper covariance matrix

Does it really work though?

• *I* = 200 People

- *I* = 200 People
- L = 100 Replicates

- *I* = 200 People
- L = 100 Replicates
- $\sigma = 200 \text{ms}$ trial variability

- *I* = 200 People
- L = 100 Replicates
- $\sigma = 200$ ms trial variability
- $\sigma_{\theta} = 20$ ms between ppl variability

Simulation 1: Two tasks

• When studying individual differences we are interested in stable, qualitative variability.

- When studying individual differences we are interested in stable, qualitative variability.
- When taking sample noise into account little variability is left.

- When studying individual differences we are interested in stable, qualitative variability.
- When taking sample noise into account little variability is left.
- The reason may be stochastic dominance (i.e. everyone shows the effect in the expected direction).

- When studying individual differences we are interested in stable, qualitative variability.
- When taking sample noise into account little variability is left.
- The reason may be stochastic dominance (i.e. everyone shows the effect in the expected direction).
- Even if no one shows a negative effect there still can be meaningful differences (some do some don't).

- When studying individual differences we are interested in stable, qualitative variability.
- When taking sample noise into account little variability is left.
- The reason may be stochastic dominance (i.e. everyone shows the effect in the expected direction).
- Even if no one shows a negative effect there still can be meaningful differences (some do some don't).
- When true variability is small it can be hard to study individual differences across tasks.

Increase number of trials per person

- Increase number of trials per person
- Get rid of conditions you don't care about

- Increase number of trials per person
- Get rid of conditions you don't care about
- Strong manipulation to increase the overall effect

- Increase number of trials per person
- Get rid of conditions you don't care about
- Strong manipulation to increase the overall effect

Analysis

Use hierarchical modeling

- Increase number of trials per person
- Get rid of conditions you don't care about
- Strong manipulation to increase the overall effect

- Use hierarchical modeling
- Use models that answer your theoretical question
Thank you!

- Haaf, J. M. (2018). A hierarchical Bayesian analysis of multiple order constraints in behavioral science (PhD thesis). University of Missouri.
- Haaf, J. M., & Rouder, J. N. (2017). Developing constraint in Bayesian mixed models. Psychological Methods, 22(4), 779–798.
- Haaf, J. M., & Rouder, J. N. (2019). Some do and some don't? Accounting for variability of individual difference structures. *Psychonomic Bulletin and Review*. Retrieved from https://psyarxiv.com/zwjtp/
- Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. *Behavioral Research Methods*.
- Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. *Attention, Perception & Psychophysics*, 72, 2013–2025.
- Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. *Journal of Experimental Psychology: Learning, Memory, and Cognition.* Retrieved from http://dx.doi.org/10.1037/xlm0000450
- Rouder, J. N., Kumar, A., & Haaf, J. M. (2019). Why most studies of individual differences with inhibition tasks are bound to fail. Retrieved from https://psyarxiv.com/3cjr5/download?format=pdf
- Rouder, J., & Haaf, J. M. (2019). A psychometrics of individual differences in experimental tasks. Psychonomic Bulletin and Review. Retrieved from doi.org/10.3758/s13423-018-1558-y
- Von Bastian, C. C., Souza, A. S., & Gade, M. (2015). No evidence for bilingual cognitive advantages: A test of four hypotheses. Journal of Experimental Psychology: General, 145(2), 246–258.