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Psychology and Statistics

• Get use new insights using new scientific methods to advance
psychology.

• Found scientific methods in theoretical considerations.
• When combining methods and theory we can come up with

new and interesting research questions and solutions.
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Psychology Guiding Methods

Theoretical Statements

• Levels of processing (Craik & Lockhart, 1972): Processing
words semantically increases memory performance as compared
to more shallow processing.

• Stroop interference (Stroop, 1935): Due to interference,
processing of incongruent items takes longer than processing of
congruent items.
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The Stroop Effect

ROT ROT
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Ordinal Constraints in Social Sciences

• Claim: Most psychological theory makes ordinal predictions on
data.

• Almost never metric predictions.
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Ordinal Constraints and the Stroop Effect
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Quantitative and Qualitative Individual Differences
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Psychology Guiding Methods

• Statistical models of Stroop interference should respect the
theoretically important areas of negative, null, and positive
effects.

• Statistical models should distinguish between qualitative and
quantitative individual differences.
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Methods Guiding Psychology

• Before modeling we need to consider the effect of sample noise
in this setting.

• Observed effect = True effect + sample noise → What we
observe with limited numbers of trials.

• True effect: What we would obtain if we had an unlimited
number of trials per person per condition.
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The Research Question

Does everyone show a true effect in the same direction?
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Is this an interesting question?
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Is this an interesting question?
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Let’s Do Some Modeling

Let Yijk be the response time

• of the ith person, i = 1, . . . , I,

• in the jth condition, j = congruent, incongruent,
• for the kth trial, k = 1, . . . ,Kij .
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Let’s Do Some Modeling

Let Yijk be the response time

• of the ith person, i = 1, . . . , I,
• in the jth condition, j = congruent, incongruent,
• for the kth trial, k = 1, . . . ,Kij .

Then

Yijk ∼ Normal(µ+ αi + xjθi , σ
2).

We care about the collection of θi .
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Models on Individuals’ True Effects

Three models are needed:

21



Models on Individuals’ True Effects

Three models are needed:

1. No one shows a true Stroop effect.

2. Everyone show a true Stroop effect in the same direction.
3. True Stroop effects vary in direction and size.

22



Models on Individuals’ True Effects

Three models are needed:

1. No one shows a true Stroop effect.
2. Everyone show a true Stroop effect in the same direction.

3. True Stroop effects vary in direction and size.

22



Models on Individuals’ True Effects

Three models are needed:

1. No one shows a true Stroop effect.
2. Everyone show a true Stroop effect in the same direction.
3. True Stroop effects vary in direction and size.

22



Models for Individual Differences and Ordinal Constraint
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No One Shows a True Stroop Effect
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Everyone Show a True Stroop Effect in the Same Direction
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True Stroop Effects Vary in Direction and Size
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From Models. . .
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From Models. . . to Predictions
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From Models. . . to Predictions. . . to Predictive Accuracy
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Ordinal Constraint for Individual Stroop Effects

Participants
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Does everyone Stroop?
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Does everyone Stroop?

Study Participants Trials Effect BFpu BFp0

Rey-Mermet, number 264 93 54 ms 6.05 > 10300

Rey-Mermet, color 261 94 59 ms 10−4 > 10300

Pratte, Exp 1 38 146 90 ms 4.75 1073

Pratte, Exp 2 38 165 12 ms 0.28 78.49
Von Bastian 121 46 64 ms 6.38 1062

Hedge 53 410 69 ms 6.33 > 10300
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Motivated by Pratte et al., Experiment 2

• Why do some people not show a Stroop effect?

• What is the nature of their non-Stroopiness?
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Motivated by Pratte et al., Experiment 2
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What could be different with the location Stroop?

LEFT

Pratte, Rouder, Morey, & Feng (2010)
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What could be different with the location Stroop?

• Different participants use different strategies.

• How would we tell?
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How would we tell?
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Some Do Some Don’t

−200 −100 0 100 200

0.
00

0.
01

0.
02

0.
03

0.
04

True Stroop Effect (ms)

D
en

si
ty

Haaf & Rouder (2019)
43



Modeling Approach: Some Do Some Don’t Model
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Location Stroop Results

• The Bayes factor of the some-do-some-don’t model over the
unconstrained model is 4.4 to 1.

• Which participants do and which don’t?
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Classification Based on the Hierarchical Model
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Summary

• Quantitative vs. qualitative individual differences.

• If everyone shows an effect in the same direction we can rely on
simple, universal theoretical accounts.

• If some individuals robustly show no effect it can have
implications for experimental methods and theory.

• If some individuals robustly show an opposite effect we may
prefer more complex theories.

• In this case, answering why there are qualitative individual
differences is key for theory development.
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Do it yourself: The Does-Everyone
t-Test



Function quid(): The Qualitative-Individual-Differences Test
Function

• quid() is available on github:
https://github.com/jstbcs/play/
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Function quid(): The Qualitative-Individual-Differences Test
Function

• quid() is available on github:
https://github.com/jstbcs/play/

• The function may be installed as follows:

install.packages(c("BayesFactor", "MCMCpack", "curl"))
filename <- curl::curl("https://bit.ly/2ZqGOik")
source(filename)
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Function quid(): The Qualitative-Individual-Differences Test
Function

• Let’s look at some data: Von Bastian, Souza, & Gade (2015),
Experiment 1.

• For the code to run you need the package devtools
(install.packages("devtools")).
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Function quid(): The Qualitative-Individual-Differences Test
Function

• Let’s look at some data: Von Bastian et al. (2015),
Experiment 1.

• For the code to run you need the package devtools
(install.packages("devtools")).

devtools::source_url("https://bit.ly/2SxyKtq")
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Function quid(): The Qualitative-Individual-Differences Test
Function

• Let’s look at some data: Von Bastian et al. (2015).
• For the code to run you need the package devtools

(install.packages("devtools")).

devtools::source_url("https://bit.ly/2SxyKtq")

The data are now loaded as a data frame called stroop.
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Function quid(): The Qualitative-Individual-Differences Test
Function

• The participant identification number is the variable
stroop$ID (from 1 to 121).

• The condition is the variable stroop$cond (values are 1 for
congruent and 2 for incongruent)

• The response time for each trial in seconds is stored in the
variable stroop$rt
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Function quid(): The Qualitative-Individual-Differences Test
Function

Now we are ready to use quid():

res <- quid(id = stroop$ID
, condition = stroop$cond
, rt = stroop$rt)
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Function quid(): The Qualitative-Individual-Differences Test
Function

The output, res, is a list containing

• The posterior-mean estimates from the unconstrained model
for each individuals’ effect (θi).

• The posterior overall effect.
• The posterior standard deviation of estimated effects.
• The Bayes factors for the models, and raw outputs from the

underlying MCMC chains (res$bfs).
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Function quid(): The Qualitative-Individual-Differences Test
Function

The output, res, is a list containing

• The posterior-mean estimates from the unconstrained model
for each individuals’ effect (θi).

• The posterior overall effect.
• The posterior standard deviation of estimated effects.
• The Bayes factors for the models, and raw outputs from the

underlying MCMC chains (res$bfs).

res$bfs

## bf.1u bf.pu bf.0u
## 9.777135e-01 6.310874e+00 1.002935e-62
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Function quid(): Prior Settings

• An important input to quid() is prior.

• The default is prior = c(1/6, 1/10).
• These values are scales on:

(a) about how large we expect the mean effect to be, and
(b) about how much we expect individuals to differ from this mean

effect.
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Function quid(): Prior Settings

• An important input to quid() is prior.
• The default is prior = c(1/6, 1/10).

largeVals <- c(80/200, 40/200)
resB <- quid(id = stroop$ID

, condition = stroop$cond
, rt = stroop$rt
, prior = largeVals)

resB$bfs

## bf.1u bf.pu bf.0u
## 3.077463e+00 4.664942e+00 2.570078e-62
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Function quid(): Other Priors

(µ, σ2) ∝ 1
σ2
,

αi ∼ Normal(0, gασ
2),

Most important priors:

θi ∼ Normal(µθ, gθσ
2),

µθ ∼ Normal(0, gµθ, σ
2).

gs have scaled χ2-distributions, and the scales are set by prior.
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Function quid(): You can make nice plots!
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Does every study show an effect in
the expected direction?



Why This Is A Good Question For Meta-analysis

• The usual meta-analytic question: What is the overall effect
combined over a bunch of studies?

• The overall effect depends on many things.
• Choices of paradigms and variables.
• What is currently hot in the field.
• If the target contrast is robust the direction of the effect should

not be affected.
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New Meta-Analytic Question

Does Every Study In A Collection Plausibly Show an Effect
in the Same Direction?

(Haaf, 2018; Rouder, Haaf, Davis-Stober, & Hilgard, 2019)
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Meta-Analytic Models
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Application: Early language development

• Do toddlers recognize familiar words?

• General finding: Toddlers (~11-20 months) pay longer
attention to familiar words than novel ones.

• Carbajal (2018) conducted a meta-analysis with 33 studies.
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Application: Early language development
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Application: Early language development
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Application: Early language development

• The Bayes factor of the every-study-does over the
unconstrained model is 8.01 to 1.

• The Bayes factor of the every-study-does over the null model is
4.83 to 1.
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Summary II

• Evidence that every study shows the familiar-words effect.

• The average effect size is 0.2 (Fisher’s Z ).
• Qualitative interactions (Gail & Simon, 1985).
• Does-every-study approach is now implemented in the metaBMA

package in R.
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Back to Individual Differences

• Cognitive Psychology is more complicated than the Stroop
effect.

• Developing individual differences approaches for more diverse
data patterns.

69



Back to Individual Differences

• Cognitive Psychology is more complicated than the Stroop
effect.

• Developing individual differences approaches for more diverse
data patterns.

69



Example: How do we represent numbers internally?
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How do we represent numbers internally?

1. Analog representation.
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How do we represent numbers internally?

1. Analog representation.
2. Propositional representation.
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How do we represent numbers internally?

1. Analog representation.
2. Propositional representation.
3. Priming + spreading activation.
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Theoretical positions as ordinal models
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Rouder, Lu, Speckman, Sun, & Jiang (2005)
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Individual Differences in Number Representation

Does everyone represent numbers the same way?
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Individual Differences in Number Representation

Does everyone represent numbers the same way?

• Common mechanism → common processing architecture.

• Mixture of representations → what is the underlying
mechanism?
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Individual Differences in Number Representation
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Individual Differences in Number Representation
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Individual Differences in Number Representation
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Individual Differences in Number Representation

• Preferred model: Analog representation model

• Preferred 9.78-to-1 over the None of the above model
• Preferred 3× 1055-to-1 over the Propositional

representation model
• Bayes factor for Priming + spreading activation model

cannot be estimated

81



Individual Differences in Number Representation

• Preferred model: Analog representation model
• Preferred 9.78-to-1 over the None of the above model

• Preferred 3× 1055-to-1 over the Propositional
representation model

• Bayes factor for Priming + spreading activation model
cannot be estimated

81



Individual Differences in Number Representation

• Preferred model: Analog representation model
• Preferred 9.78-to-1 over the None of the above model
• Preferred 3× 1055-to-1 over the Propositional

representation model

• Bayes factor for Priming + spreading activation model
cannot be estimated

81



Individual Differences in Number Representation

• Preferred model: Analog representation model
• Preferred 9.78-to-1 over the None of the above model
• Preferred 3× 1055-to-1 over the Propositional

representation model
• Bayes factor for Priming + spreading activation model

cannot be estimated

81



Take Away

Does everyone show an effect in the same direction?

• To answer this question we need a combination of new
methods and theoretical considerations.

• Everyone Stroops.
• Qualitative vs. quantitative individual differences is a useful

distrinction in cognitive psychology.
• For individual differences research: Assessing how individuals

vary without overstating individual differences.
• We first need to know that people have a similar processing

architecture before we can report average effects.
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Thank you!

Are there any questions?
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Normal Models?!?

• But RT is skewed rather than symmetric.

1. We care about effects on RT, and the models are relatively
robust to violations on the trial-RT level.

• Advantage of the normal specification:

1. The normal is computationally convenient
2. The effect is easily parameterized and the placement of

constraint is straightforward to implement.
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