

University of Amsterdam

Does Everyone? Modeling Individual Differences in Cognitive Tasks.

Julia Haaf September, 2019

Psychology and Statistics

Get use new insights using new scientific methods to advance psychology.

Psychology and Statistics

- Get use new insights using new scientific methods to advance psychology.
- Found scientific methods in theoretical considerations.

Psychology and Statistics

- Get use new insights using new scientific methods to advance psychology.
- Found scientific methods in theoretical considerations.
- When combining methods and theory we can come up with new and interesting research questions and solutions.

Theoretical Statements

 Levels of processing (Craik & Lockhart, 1972): Processing words semantically increases memory performance as compared to more shallow processing.

Theoretical Statements

- Levels of processing (Craik & Lockhart, 1972): Processing words semantically increases memory performance as compared to more shallow processing.
- Stroop interference (Stroop, 1935): Due to interference, processing of incongruent items takes longer than processing of congruent items.

Theoretical Statements

- Levels of processing (Craik & Lockhart, 1972): Processing words semantically increases memory performance as compared to more shallow processing.
- Stroop interference (Stroop, 1935): Due to interference, processing of incongruent items takes longer than processing of congruent items.

Claim: Most psychological theory makes ordinal predictions on data.

- Claim: Most psychological theory makes ordinal predictions on data.
- Almost never metric predictions.

Quantitative and Qualitative Individual Differences

Quantitative and Qualitative Individual Differences

 Statistical models of Stroop interference should respect the theoretically important areas of negative, null, and positive effects.

- Statistical models of Stroop interference should respect the theoretically important areas of negative, null, and positive effects.
- Statistical models should distinguish between qualitative and quantitative individual differences.

Methods Guiding Psychology

 Before modeling we need to consider the effect of sample noise in this setting.

Methods Guiding Psychology

- Before modeling we need to consider the effect of sample noise in this setting.
- Observed effect = True effect + sample noise → What we observe with limited numbers of trials.

Methods Guiding Psychology

- Before modeling we need to consider the effect of sample noise in this setting.
- Observed effect = True effect + sample noise → What we observe with limited numbers of trials.
- *True effect*: What we would obtain if we had an unlimited number of trials per person per condition.

Does everyone show a true effect in the same direction?

Is this an interesting question?

Is this an interesting question?

• of the *i*th person, $i = 1, \ldots, I$,

- of the *i*th person, $i = 1, \ldots, I$,
- in the *j*th condition, *j* = congruent, incongruent,

- of the *i*th person, $i = 1, \ldots, I$,
- in the *j*th condition, *j* = congruent, incongruent,
- for the *k*th trial, $k = 1, \ldots, K_{ij}$.

- of the *i*th person, $i = 1, \ldots, I$,
- in the *j*th condition, j = congruent, incongruent,
- for the kth trial, $k = 1, \ldots, K_{ij}$.

Then

$$Y_{ijk} \sim \text{Normal}(\mu + \alpha_i + x_j \theta_i, \sigma^2).$$

- of the *i*th person, $i = 1, \ldots, I$,
- in the *j*th condition, j = congruent, incongruent,
- for the kth trial, $k = 1, \ldots, K_{ij}$.

Then

$$Y_{ijk} \sim \mathsf{Normal}(\mu + \alpha_i + x_j \theta_i, \sigma^2).$$

We care about the collection of θ_i .

1. No one shows a true Stroop effect.

- 1. No one shows a true Stroop effect.
- 2. Everyone show a true Stroop effect in the same direction.

- 1. No one shows a true Stroop effect.
- 2. Everyone show a true Stroop effect in the same direction.
- 3. True Stroop effects vary in direction and size.

Models for Individual Differences and Ordinal Constraint

Haaf & Rouder (2017)

No One Shows a True Stroop Effect

Everyone Show a True Stroop Effect in the Same Direction

Haaf & Rouder (2017)
True Stroop Effects Vary in Direction and Size

Haaf & Rouder (2017)

From Models... to Predictions

From Models... to Predictions... to Predictive Accuracy

Ordinal Constraint for Individual Stroop Effects

Number-Stroop data by Rey-Mermet, Gade, & Oberauer (2018).

Does everyone Stroop?

31

Study	Participants	Trials	Effect	BF _{pu}	BF_{p0}
Rey-Mermet, number	264	93	54 ms	6.05	$> 10^{300}$

Study	Participants	Trials	Effect	BF _{pu}	BF_{p0}
Rey-Mermet, number	264	93	54 ms	6.05	$> 10^{300}$
Rey-Mermet, color	261	94	59 ms	10^{-4}	$> 10^{300}$
Pratte, Exp 1	38	146	90 ms	4.75	10 ⁷³
Pratte, Exp 2	38	165	12 ms	0.28	78.49
Von Bastian	121	46	64 ms	6.38	10 ⁶²
Hedge	53	410	69 ms	6.33	$> 10^{300}$

Study	Participants	Trials	Effect	BF _{pu}	BF_{p0}
Rey-Mermet, number	264	93	54 ms	6.05	$> 10^{300}$
Rey-Mermet, color	261	94	59 ms	10^{-4}	$> 10^{300}$
Pratte, Exp 1	38	146	90 ms	4.75	10 ⁷³
Pratte, Exp 2	38	165	12 ms	0.28	78.49
Von Bastian	121	46	64 ms	6.38	10 ⁶²
Hedge	53	410	69 ms	6.33	$> 10^{300}$

• Why do some people not show a Stroop effect?

- Why do some people not show a Stroop effect?
- What is the nature of their non-Stroopiness?

• Different participants use different strategies.

- Different participants use different strategies.
- How would we tell?

How would we tell?

Some Do Some Don't

Haaf & Rouder (2019)

Modeling Approach: Some Do Some Don't Model

Haaf & Rouder (2019)

• The Bayes factor of the some-do-some-don't model over the unconstrained model is 4.4 to 1.

- The Bayes factor of the some-do-some-don't model over the unconstrained model is 4.4 to 1.
- Which participants do and which don't?

Classification Based on the Hierarchical Model

Haaf & Rouder (2019)

• Quantitative vs. qualitative individual differences.

- Quantitative vs. qualitative individual differences.
- If everyone shows an effect in the same direction we can rely on simple, universal theoretical accounts.

- Quantitative vs. qualitative individual differences.
- If everyone shows an effect in the same direction we can rely on simple, universal theoretical accounts.
- If some individuals robustly show no effect it can have implications for experimental methods and theory.

- Quantitative vs. qualitative individual differences.
- If everyone shows an effect in the same direction we can rely on simple, universal theoretical accounts.
- If some individuals robustly show no effect it can have implications for experimental methods and theory.
- If some individuals robustly show an opposite effect we may prefer more complex theories.

- Quantitative vs. qualitative individual differences.
- If everyone shows an effect in the same direction we can rely on simple, universal theoretical accounts.
- If some individuals robustly show no effect it can have implications for experimental methods and theory.
- If some individuals robustly show an opposite effect we may prefer more complex theories.
- In this case, answering why there are qualitative individual differences is key for theory development.

Do it yourself: The Does-Everyone *t*-Test

 quid() is available on github: https://github.com/jstbcs/play/

- quid() is available on github: https://github.com/jstbcs/play/
- The function may be installed as follows:

```
install.packages(c("BayesFactor", "MCMCpack", "curl"))
filename <- curl::curl("https://bit.ly/2ZqGOik")
source(filename)</pre>
```

 Let's look at some data: Von Bastian, Souza, & Gade (2015), Experiment 1.

- Let's look at some data: Von Bastian, Souza, & Gade (2015), Experiment 1.
- For the code to run you need the package devtools (install.packages("devtools")).

- Let's look at some data: Von Bastian et al. (2015), Experiment 1.
- For the code to run you need the package devtools (install.packages("devtools")).

devtools::source_url("https://bit.ly/2SxyKtq")

- Let's look at some data: Von Bastian et al. (2015).
- For the code to run you need the package devtools (install.packages("devtools")).

devtools::source_url("https://bit.ly/2SxyKtq")

The data are now loaded as a data frame called stroop.
• The participant identification number is the variable stroop\$ID (from 1 to 121).

- The participant identification number is the variable stroop\$ID (from 1 to 121).
- The condition is the variable stroop\$cond (values are 1 for congruent and 2 for incongruent)

- The participant identification number is the variable stroop\$ID (from 1 to 121).
- The condition is the variable stroop\$cond (values are 1 for congruent and 2 for incongruent)
- The response time for each trial in seconds is stored in the variable stroop\$rt

```
Now we are ready to use quid():
```

```
res <- quid(id = stroop$ID
    , condition = stroop$cond
    , rt = stroop$rt)</pre>
```

The output, res, is a list containing

 The posterior-mean estimates from the unconstrained model for each individuals' effect (θ_i).

The output, res, is a list containing

- The posterior-mean estimates from the unconstrained model for each individuals' effect (θ_i).
- The posterior overall effect.

The output, res, is a list containing

- The posterior-mean estimates from the unconstrained model for each individuals' effect (θ_i).
- The posterior overall effect.
- The posterior standard deviation of estimated effects.

The output, res, is a list containing

- The posterior-mean estimates from the unconstrained model for each individuals' effect (θ_i).
- The posterior overall effect.
- The posterior standard deviation of estimated effects.
- The Bayes factors for the models, and raw outputs from the underlying MCMC chains (res\$bfs).

The output, res, is a list containing

- The posterior-mean estimates from the unconstrained model for each individuals' effect (θ_i).
- The posterior overall effect.
- The posterior standard deviation of estimated effects.
- The Bayes factors for the models, and raw outputs from the underlying MCMC chains (res\$bfs).

res\$bfs

bf.1u bf.pu bf.0u
9.777135e-01 6.310874e+00 1.002935e-62

• An important input to quid() is prior.

- An important input to quid() is prior.
- The default is prior = c(1/6, 1/10).

- An important input to quid() is prior.
- The default is prior = c(1/6, 1/10).
- These values are scales on:

- An important input to quid() is prior.
- The default is prior = c(1/6, 1/10).
- These values are scales on:
- (a) about how large we expect the mean effect to be, and

- An important input to quid() is prior.
- The default is prior = c(1/6, 1/10).
- These values are scales on:
- (a) about how large we expect the mean effect to be, and
- (b) about how much we expect individuals to differ from this mean effect.

Function quid(): Prior Settings

- An important input to quid() is prior.
- The default is prior = c(1/6, 1/10).

```
largeVals <- c(80/200, 40/200)
resB <- quid(id = stroop$ID
            , condition = stroop$cond
            , rt = stroop$rt
            , prior = largeVals)
resB$bfs</pre>
```

bf.1u bf.pu bf.0u
3.077463e+00 4.664942e+00 2.570078e-62

Function quid(): Other Priors

$$(\mu, \sigma^2) \propto rac{1}{\sigma^2},$$

$$\alpha_i \sim \text{Normal}(0, g_\alpha \sigma^2),$$

Most important priors:

 $\theta_i \sim \operatorname{Normal}(\mu_{\theta}, g_{\theta}\sigma^2),$

$$\mu_{ heta} \sim \mathsf{Normal}(\mathsf{0}, \mathsf{g}_{\mu heta}, \sigma^2).$$

gs have scaled χ^2 -distributions, and the scales are set by prior.

Function quid(): You can make nice plots!

Does every study show an effect in the expected direction?

• The usual meta-analytic question: What is the overall effect combined over a bunch of studies?

- The usual meta-analytic question: What is the overall effect combined over a bunch of studies?
- The overall effect depends on many things.

- The usual meta-analytic question: What is the overall effect combined over a bunch of studies?
- The overall effect depends on many things.
- Choices of paradigms and variables.

- The usual meta-analytic question: What is the overall effect combined over a bunch of studies?
- The overall effect depends on many things.
- Choices of paradigms and variables.
- What is currently hot in the field.

- The usual meta-analytic question: What is the overall effect combined over a bunch of studies?
- The overall effect depends on many things.
- Choices of paradigms and variables.
- What is currently hot in the field.
- If the target contrast is robust the *direction* of the effect should not be affected.

Does Every Study In A Collection Plausibly Show an Effect in the Same Direction?

(Haaf, 2018; Rouder, Haaf, Davis-Stober, & Hilgard, 2019)

Meta-Analytic Models

• Do toddlers recognize familiar words?

- Do toddlers recognize familiar words?
- General finding: Toddlers (~11-20 months) pay longer attention to familiar words than novel ones.

- Do toddlers recognize familiar words?
- General finding: Toddlers (~11-20 months) pay longer attention to familiar words than novel ones.
- Carbajal (2018) conducted a meta-analysis with 33 studies.

• The Bayes factor of the every-study-does over the unconstrained model is 8.01 to 1.

- The Bayes factor of the every-study-does over the unconstrained model is 8.01 to 1.
- The Bayes factor of the every-study-does over the null model is 4.83 to 1.

• Evidence that every study shows the familiar-words effect.

- Evidence that every study shows the familiar-words effect.
- The average effect size is 0.2 (Fisher's Z).

- Evidence that every study shows the familiar-words effect.
- The average effect size is 0.2 (Fisher's Z).
- Qualitative interactions (Gail & Simon, 1985).

- Evidence that every study shows the familiar-words effect.
- The average effect size is 0.2 (Fisher's Z).
- Qualitative interactions (Gail & Simon, 1985).
- Does-every-study approach is now implemented in the metaBMA package in R.
• Cognitive Psychology is more complicated than the Stroop effect.

- Cognitive Psychology is more complicated than the Stroop effect.
- Developing individual differences approaches for more diverse data patterns.

Example: How do we represent numbers internally?

1. Analog representation.

- 1. Analog representation.
- 2. Propositional representation.

- 1. Analog representation.
- 2. Propositional representation.
- **3.** Priming + spreading activation.

Theoretical positions as ordinal models

Propositional Representation

Rouder, Lu, Speckman, Sun, & Jiang (2005)

Does everyone represent numbers the same way?

Does everyone represent numbers the same way?

• Common mechanism \rightarrow common processing architecture.

Does everyone represent numbers the same way?

- Common mechanism \rightarrow common processing architecture.
- Mixture of representations \rightarrow what is the underlying mechanism?

Data by Rouder, Lu, Speckman, Sun, & Jiang (2005).

• Preferred model: Analog representation model

- Preferred model: Analog representation model
- Preferred 9.78-to-1 over the None of the above model

- Preferred model: Analog representation model
- Preferred 9.78-to-1 over the None of the above model
- Preferred 3 × 10⁵⁵-to-1 over the Propositional representation model

- Preferred model: Analog representation model
- Preferred 9.78-to-1 over the None of the above model
- Preferred 3 × 10⁵⁵-to-1 over the Propositional representation model
- Bayes factor for Priming + spreading activation model cannot be estimated

• To answer this question we need a combination of new methods and theoretical considerations.

- To answer this question we need a combination of new methods and theoretical considerations.
- Everyone Stroops.

- To answer this question we need a combination of new methods and theoretical considerations.
- Everyone Stroops.
- Qualitative vs. quantitative individual differences is a useful distrinction in cognitive psychology.

- To answer this question we need a combination of new methods and theoretical considerations.
- Everyone Stroops.
- Qualitative vs. quantitative individual differences is a useful distrinction in cognitive psychology.
- For individual differences research: Assessing how individuals vary without overstating individual differences.

- To answer this question we need a combination of new methods and theoretical considerations.
- Everyone Stroops.
- Qualitative vs. quantitative individual differences is a useful distrinction in cognitive psychology.
- For individual differences research: Assessing how individuals vary without overstating individual differences.
- We first need to know *that people have a similar processing architecture* before we can report average effects.

Are there any questions?

• But RT is skewed rather than symmetric.

- But RT is skewed rather than symmetric.
- 1. We care about effects on RT, and the models are relatively robust to violations on the trial-RT level.

- But RT is skewed rather than symmetric.
- 1. We care about effects on RT, and the models are relatively robust to violations on the trial-RT level.
- Advantage of the normal specification:

- But RT is skewed rather than symmetric.
- 1. We care about effects on RT, and the models are relatively robust to violations on the trial-RT level.
- Advantage of the normal specification:

- But RT is skewed rather than symmetric.
- 1. We care about effects on RT, and the models are relatively robust to violations on the trial-RT level.
- Advantage of the normal specification:
- **2.** The effect is easily parameterized and the placement of constraint is straightforward to implement.

References

- Carbajal, M. J. (2018). Separation and acquisition of two languages in earlychildhood: A multidisciplinary approach (PhD thesis). Université Paris Sciences et Lettres.
- Gail, M., & Simon, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics, 41(2), 361–372.
- Haaf, J. M. (2018). A hierarchical Bayesian analysis of multiple order constraints in behavioral science (PhD thesis). University of Missouri.
- Haaf, J. M., & Rouder, J. N. (2017). Developing constraint in Bayesian mixed models. *Psychological Methods*, 22(4), 779–798.
- Haaf, J. M., & Rouder, J. N. (2019). Some do and some don't? Accounting for variability of individual difference structures. *Psychonomic Bulletin and Review*, 26, 772–789. Retrieved from https://doi.org/10.3758/s13423-018-1522-x
- Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. *Attention, Perception & Psychophysics*, 72, 2013–2025.
- Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. *Journal of Experimental Psychology: Learning, Memory,* and Cognition. Retrieved from http://dx.doi.org/10.1037/xlm0000450
- Rouder, J. N., Haaf, J. M., Davis-Stober, C. P., & Hilgard, J. (2019). Beyond overall effects: A Bayesian approach to finding constraints in meta-analysis. *Psychological Methods*.
- Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. *Psychonomic Bulletin and Review*, 12, 195–223.
- Von Bastian, C. C., Souza, A. S., & Gade, M. (2015). No evidence for bilingual cognitive advantages: A test of